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Abstract: (R)-and (S)-hrJV-Diethyl2,2-difluoro-3-(2-furyl)-3-hydroxypropionamide 7 have 

been obtained via enzymic resolution of the racemic acetate using lipase MY from Candida 

cyhdrucea. Ozonolysis of the (S)-7 followed by hydrolysis afforded the (S)-p,p- 

difluoromalic acid 1. 

Malic acid is an important intermediate of the citric acid cycle and is found in a wide variety of 

organisms. Moreover, because of its commercial availability, chiral malic acid has been extensively used as 

chiral source for enantioselectlve synthesis of various complex moleculesI The incorporation of two fluorine 

atoms into the methylene group of this molecule would exert a pronounced influence on its chemical property 

with no significant effect on its geometry.2 Such compound is potentially useful as probe for studies of the 

citric acid cycle and also as chiral building blocks for the synthesis of highly functionalized gem-difluorinated 

molecules. In this paper, as a part of our studies on biochemical preparation of optically active fluorine- 

containing compounds.3 we report the facile synthesis of optically active P,P-difluoromalic acid 1 via 

enzymic resolution of the precursor bearing furan ring. 

Our synthetic strategy involves kinetic resolution of a,a-difluoro-P_hydroxypropionic derivative 

bearing a fury1 group on its j3-position, which functions as latent carboxylic acid.4 In fact, fury1 substituted 

difluorometbylene compound 2, which was easily obtained by Reformatsky reaction of methyl 

chlorodifluoroacetate with futfural,5 was easily converted into racemic /3,~fluoromalic acid (&)-I6 via 

ozonolysis followed by acid hydrolysis. 

CHO + CICF,CO,Me 

OH 0 
(9-2 (64%) 

03 ) 6N HCI 
- HO 

OH 

MeOH 
OH 0 

Thus, 2 was readily converted into the corresponding acetate 3 which was used as substrate for 

enzymic hydrolysis. However, kinetic resolution of 3 with lipase MY was unsuccessful giving the mixture 

of starting material 3, P-acetoxyacid 4, and P-hydroxyacid 5 due to non-regioselective hydrolysis of the 

substrate. Such an unexpected result has never been observed in the enzymic resolution for the similar 
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2 
AcCI, Pyr. 

CH,CI, 
OAc 0 3 

3 + WOH + w; 

OAc 0 4 

3:4:5 = 20:23:57 

acylated derivatives of hydroxyesters bearing a fury1 group7 or fluorine atoms. 8 This difference indicates that 

the presence of two fluorine atoms on the carbon adjacent to the carbonyl enhances the electrophilicity of this 

ester towards water and facilitates hydrolysis of this function. 

Therefore, we prepared N,iV-diethyl amide 69 which was found to be stable to the enzymic hydrolysis 

that cleaved the ester 3, and kinetic resolution of various acylated derivatives of 6 with lipase MY and P were 

examined.10 Results are shown in Table I. 

c I \ 
0 CHO + CICF2CONEt2 ‘” _ MNEt, RCI, C,H,N t 

DMF 
OH 0 

CH,CI, 

(9-6 (83%) 

WNE,, liE w MN,,, + WNEt, 

OR 0 OR 0 
(9-7 (W-7 (W-6 

TableL 

substrate R lipase time conv.a optical purity (o/o ee) 

7a COCH3 

(h) (o/o) (s,-7b (RW 
MY 5 Gl 96 58 

7a COCH3 P 8 a6 Xl 53 
‘ib COCH2CH3 MY 2 95 4 _d 

SI COCH2CH3 P 15 55 65 55 

7c COCH(CH3)2 MY 2 55 20 17 

7c COCH(CH3)2 P 24 0 

7d CO(CH&CH3 MY 10 53 25 18 

7d CO(CH2)&H3 P 36 55 24 21 

7e COPh MY 10 42 0 0 

7e COPh P 24 0 

aDeterminated by t9F NMR analysis of the crude mixture. bC0nfinne.d by first cansforming to the P-hydmxy- 

amide 6 by chemical hydrolysis (KzCOj, MeOH) followed by convertion into the corresponding MTF’A esters. 

cchecked by converting into the corresponding hITPA esters. dNot isolated 
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In all cases, cleavage of amide was not observed. For all substrates the reaction rates of lipase MY- 

catalyzed hydrolysis were higher than those of lipase P, and no reaction was observed when lipase P was 

employed for hydrolysis of 7c and 7e. Although hydrolysis of 7e with lipase MY was non-enantioselective, 

in all other cases the R enantiomers were preferentially hydrolyzed to give (S)-enriched starting material and 

(R)-enriched hydrolyzed compound. I1 As seen in Table I, when the substrate (f)-7a was hydrolyzed with 

lipase MY, both (S)-7a and (R)-6 were obtained in the highest optical purities, which were further enhanced 

by recycling procedures12 as follows. Reacetylation of (R)-6 provided (R)-7a, which was again treated with 

lipase MY (26% conv.) to give (R)-6 in 96% ee, while additional enzymic hydrolysis (25% conv.) of (S)-7a 

afforded (S)-7a in >99% ee. Ozonolysis of (S)-7a followed by acid hydrolysis gave (S)-B$-difluoromalic 

acid in 64% yield. The biological evaluation13 and the synthetic application of this chiral material are now in 

progress. 

(W-6 
AcCI,Pyr 

CH& 
b (R)-7a 

58%ee 

.T+ (R)_6 

(26%2conv.) g6%ee 

lipase MY 
(S)-7a - 03 6N HCI 

96% ee H2° ,$iyIe MeOH*- 
(S)-1 (64%) 

(25% conv.) 
[a]D -6.1” (~1.2, H20) 
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